Solutions to linear systems of equations; fields, vector spaces, and subspaces; rank and nullity; the four fundamental subspaces; determinants and inverse matrices; applications of Gauß-Jordan elimination; change of basis; linear transformations; norms, Lp norms, and inner product; orthonormal basis and Gram-Schmidt, eigenvectors and eigenvalues, diagonalization; symmetric, orthogonal, Hermitian, and unitary matrices; spectral decomposition; orthogonal decomposition; singular value decomposition; generalized eigenvectors and Jordan normal form.